New fluorescent probes for the detection of enzymes inhibitors in complex matrixes

Maël Gainche, Clément Michelin, Elodie Jagu, Norberta Delporte Clermont Auvergne INP, Sigma Clermont

Study of complex matrixes

The HPTLC common flowchart

Derivatisation in HPTLC analysis

Enzymatic derivatisation in HPTLC analysis

Existing HPTLC enzymatic EDA

- Tyrosinase
- Acetylcholinesterase
- Butyrylcholinesterase
- α-glucosidase
- β-glucosidase
- β-glucuronidase
- Xanthine oxydase
- Cyclooxygenase 1/2
- Peroxidase
- Aromatase
- Neuraminidase
- Lipase
- α-amylase
- Invertase
- Dipeptidyl peptidase-4
- Monoamine oxidase
- Glucose-6-phosphate dehydrogenase
- Etc.

Club de CCM, le 07/12/2023

Interest of HPTLC

- High precision and sensitivity
- ✤ High reproducibility
- High throughput screening (maximum 23 tracks/plate)

Precaution when performing enzymatic test :

- Very sensitive method (better with an initial formation)
- pH sensitive (neutralisation step)
- Sensitive to organic solvents
- Price and commercially available enzymes

Focus on acetylcholinesterase EDA

Comparison of EDA AChE using FBS (top) and 4MU (bottom) ⁹

Calibration curve of 4-MU

Range from 56.8 to 1.1 nM/cm² Exposition time : 200 ms

Club de CCM, le 07/12/2023

Small influence of pH on high concentration of 4MU

High fluorescence delta between Ac-4MU and 4MU

High contrast between 4MU and the plate

Measurement of AChE activity on plate Before AChE

After AChE (20 min)

Range from 56.8 to 1.1 nmol/cm² Exposition time : 200 ms

Club de CCM, le 07/12/2023

AChE transform Ac-4MU into 4MU

Measurement of Galantamine inhibitory activity

Control

Galanthamine

Method validation (using galantamine) and comparison with FBS

Chromogenic probe

Specificity : interaction with FBS and compounds possible

	Regression equation	16.046X + 129.91
	Correlation coefficient	0.988
	LOD (in ng/spot)	0.93 ± 0.05
	LOQ (in ng/spot)	3.09 ± 0.18
	Linearity range (ng/spot)	5 - 50
	Intra-day precision (RSD %)	Inter-day precision (RSD%)
50 ng	7.5%	0.9%
20 ng	7.6%	7.3%
10 ng	10.9%	11.3%
5 ng	12.7%	16.0%
2 ng	15.2%	17.7%
Average	10.8%	10.6%

Fluorescent probe

Specificity : necessity of AChE to change fluorescence

	Regression equation	685.17X + 682.19
	Correlation coefficient	0.991
	LOD (in ng/spot)	0.29 ± 0.02
	LOQ (in ng/spot)	0.95 ± 0.06
	Linearity range (ng/spot)	1 - 20
	Intra-day precision (RSD %)	Inter-day precision (RSD%)
50 ng	13.5%	3.4%
20 ng	18.2%	8.0%
10 ng	17.9%	15.6%
5 ng	14.4%	4.8%
2 ng	14.5%	19.5%
Average	15.7%	10.3%

Robustness : 3 different manipulator + preparation of fresh solution every time

Every concentration was analysed with **n** = **18**

Lower LOD/LOQ by a factor of 3.2 !

Less possibility of incorrect results

Method validation (using galantamine) and comparison with FBS

Journal of Chromatography A

Volume 1708, 11 October 2023, 464330

Fluorescent probe for the detection of acetylcholinesterase inhibitors using high performance thin layer chromatography effect-directed assay in complex matrices

M. Gainche, N. Delporte, C. Michelin, E. Jagu 🙎 🖾

https://doi.org/10.1016/j.chroma.2023.464330

Fluorescent probe for screening

Club de CCM, le 07/12/2023

MeOH extract HPTLC fingerprinting

Work in progress and perspectives

- Measurement of kinetic parameters
- Comparison of IC₅₀ on plate
- Modification of probe
- Design and synthesis of new probes for other enzymes
- Validation of all the analytical method
- Screening on natural matrixes and purification of active compounds

Thanks for your attention !